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Abstract

Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in

photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is lim-

ited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a

central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse

light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic

variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fit-

ted model was able to explain most of the variability in GEP at hourly (R2 = 0.77) to interannual (R2 = 0.80) time-

scales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental

variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental

variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than

biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge mod-

eling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our

approach distinguishing biotic from environmental variability can help to resolve debates about environmental limi-

tations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-

use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but

not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential effi-

ciency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of

leaves). This work highlights the importance of accounting for differential regulation of GEP at different timescales

and of identifying the underlying feedbacks and adaptive mechanisms.

Keywords: environmental limitation, leaf demography, leaf quality, leaf quantity, light-use efficiency, phenology, physiology,

temperature sensitivity on productivity

Received 20 May 2016; revised version received 8 September 2016 and accepted 8 September 2016

*Present address: Environmental & Climate Sciences Department, Brookhaven National Lab, Upton, New York, NY 11973, USA

Correspondence: Jin Wu, tel. +1 520 704 5358, fax +1 631 344 2060, e-mail: jinwu@bnl.gov and Scott R. Saleska, tel. +1 520 626 1500,

fax +1 520 621910, e-mail: saleska@email.arizona.edu

1240 © 2016 John Wiley & Sons Ltd

Global Change Biology (2017) 23, 1240–1257, doi: 10.1111/gcb.13509 BNL-113771-2017-JA



Introduction

The Amazon basin stores half of global tropical forest

biomass (Saatchi et al., 2011), harbors vegetation that

substantially influences large-scale carbon and water

budgets (Phillips et al., 2009; Lee & Boyce, 2010; Fu

et al., 2013), and exchanges mass and energy with the

atmosphere in ways that may amplify or mute climate

change (Bonan, 2008; Lee & Boyce, 2010; Fu et al., 2013).

A majority of the climate model projections from the

Coupled Model Intercomparison Project Phase 5 (CMIP

5) showed a drier and warmer future for the central

and eastern Amazon region with an increased dry-sea-

son length (Diffenbaugh & Field, 2013; Joetzjer et al.,

2013; Duffy et al., 2015). However, large uncertainties

exist in the projected responses of Amazon forests to

this climatic change, primarily driven by different rep-

resentation of plant physiological processes among veg-

etation models (Huntingford et al., 2013; Powell et al.,

2013). Our limited confidence in model predictions calls

for increased observations to more broadly test mecha-

nistic models of physiological and ecological processes

that underlie the response of tropical forests to global

change.

Seasonal and multiyear datasets of eddy covariance

(EC)-derived fluxes of carbon, water, and energy in

tropical evergreen forests (Goulden et al., 2004; Hutyra

et al., 2007; Doughty & Goulden, 2008a; von Randow

et al., 2013; Restrepo-Coupe et al., 2013; Zeri et al., 2014)

are a powerful tool for investigating factors limiting

biosphere–atmosphere exchange in tropical forests,

including photosynthesis (gross ecosystem productiv-

ity, GEP), important for predicting tropical vegetation

responses to climatic change (Nemani et al., 2003). To

date, however, most EC-based studies in the tropics

have focused on photosynthetic responses to variation

in individual environmental drivers, including solar

radiation and diffuse light fraction (Graham et al., 2003;

Goulden et al., 2004; Hutyra et al., 2007; Oliveira et al.,

2007; Cirino et al., 2014), temperature (Doughty & Goul-

den, 2008a), and vapor pressure deficit (VPD; Hutyra

et al., 2007). Despite high correlation among these dri-

vers, few analyses (Lloyd & Farquhar, 2008) considered

the covariation among them.

Besides environmental factors, biotic changes in

canopy photosynthetic efficiency associated with leaf

phenology are also important for forest photosynthesis,

but have been largely neglected in studies of tropical

evergreen forests. Leaf development and senescence,

and associated leaf demography (i.e., the distribution of

leaf ages within a forest canopy) can cause seasonal

changes in both leaf quantity (i.e., canopy leaf area) and

leaf quality (i.e., per-area photosynthetic capacity)

(Kitajima et al., 1997; Baldocchi & Amthor, 2001; Gu

et al., 2003a; Goulden et al., 2004; Richardson et al.,

2007; Doughty & Goulden, 2008b; Wu et al., 2016). With

few exceptions (e.g., Kim et al., 2012; de Weirdt et al.,

2012; Xu et al., 2016), phenology of leaf quantity and

quality in the tropics has been assumed constant in

both modeling (Powell et al., 2013; Sitch et al., 2015)

and empirical studies (Doughty & Goulden, 2008b;

Doughty et al., 2010; Lee et al., 2013).

Accurate identification of the causes of tropical forest

GEP variability may help resolve several long-standing

debates in tropical ecology. We focus here on two key

debates about tropical forest function: First is the ques-

tion of whether light or water resources are more limit-

ing to tropical forest metabolism. Most modeling

studies have represented tropical forest systems as

water-limited, simulating dry-season declines in

ecosystem-scale GEP and evapotranspiration (Werth &

Avissar, 2004; Lee et al., 2005; Christoffersen et al.,

2014). By contrast, many in situ and satellite studies

show dry season increases in GEP or evapotranspira-

tion in Amazon forests (Shuttleworth, 1988; Saleska

et al., 2003; Huete et al., 2006; Restrepo-Coupe et al.,

2013; Guan et al., 2015), but these findings are still con-

troversial in the remote sensing literature (Morton et al.,

2014; Bi et al., 2015; Saleska et al., 2016).

The second debate is about whether tropical forests

operate close to a temperature threshold, above which

performance diminishes. Observational studies report

declines in forest productivity and CO2 uptake as tem-

perature increases toward the upper end of the range

under current climates and conclude that tropical for-

ests operate close to a high temperature limit that may

easily be exceeded under climate change (Clark, 2004;

Doughty & Goulden, 2008a; Clark et al., 2013; Cavaleri

et al., 2015). There are also studies arguing that the

observed forest response to high temperature is likely a

stomatal response to VPD due to its correlation with

temperature (Lloyd & Farquhar, 2008). High VPD can

induce stomatal closure and thus reduce GEP and

evapotranspiration. Hence, the observed decline in

photosynthesis might not be a direct temperature

response and might be ameliorated by higher future

CO2 concentrations under climate change (Ainsworth

& Long, 2005; Lewis et al., 2009; Zhang et al., 2015).

The goal of this study was to advance understanding

of how environmental variation and biotic change in

canopy photosynthetic efficiency independently and

jointly regulate tropical forest photosynthetic metabo-

lism, in order to provide new insights into the two

long-standing debates mentioned above. We ask the

following: (i) How do environmental variables control

hourly photosynthesis in tropical evergreen forests? (ii)

What are the relative contributions of environmental

and biotic factors in controlling tropical photosynthesis
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on timescales from hours to years? (iii) Given the con-

text of (i) and (ii), what can we say about environmental

limitations and the temperature sensitivity of tropical

forest photosynthesis? To address these questions, we

used a seven-year dataset of EC measurements from a

central eastern Amazonian evergreen forest in Brazil

(Hutyra et al., 2007; Restrepo-Coupe et al., 2013; Wu

et al., 2016) and partitioned the variability of GEP into

responses to various causes at different timescales.

Materials and methods

Overview

Here, we summarize the approach we developed in this study

for partitioning the variability of GEP into responses to both

environmental and biotic (i.e., canopy photosynthetic effi-

ciency) causes at different timescales. Our strategy was to first

apply the approach of Wu et al. (2016) to derive an estimate of

canopy photosynthetic efficiency at monthly timescales,

namely LUEref, the light-use efficiency (LUE = GEP/PAR)

under reference environmental conditions. We then normal-

ized hourly GEP by LUEref within each month to provide a

metric for photosynthetic sensitivity to environmental drivers.

At hourly timescales, we then used path analysis (Bassow &

Bazzaz, 1998; Huxman et al., 2003) to statistically identify

which environmental drivers influenced GEP and the LUEref-

normalized GEP and to quantify their relative importance. We

used these results to develop a parsimonious, physiologically

based light-use efficiency (LUE) model for hourly GEP. We

then used analysis of variance (ANOVA) to partition the

observed hourly GEP across different timescales (Hui et al.,

2003; Richardson et al., 2007) to determine the relative impor-

tance of environmental and biotic controls at timescales rang-

ing from hours to years. Finally, we tested whether there

existed any environmental control on the interannual dynam-

ics of the biotic factor (i.e., monthly LUEref). The whole analy-

sis flow is shown in Fig. 1.

Site description

The study site is the Tapaj�os National Forest, k67 eddy covari-

ance tower site (54°580W, 2°510S), near Santar�em, Par�a, Brazil.

It is an evergreen tropical forest on a well-drained clay-soil

plateau, with a mean upper canopy height of ~40 m (Hutyra

et al., 2007). Mean annual precipitation is ~2000 mm yr�1 with

a 5-month dry season (monthly precipitation < monthly evap-

otranspiration) from approximately mid-July to mid-Decem-

ber. Additional local site information can be found in Hutyra

et al. (2007) and Restrepo-Coupe et al. (2013).

Measurements of fluxes and environmental drivers

The eddy covariance (EC) method was used to measure the

CO2 exchange between forest and the atmosphere from a 64-m

high tower at Tapaj�os k67 site (Saleska et al., 2003; Hutyra

et al., 2007; Restrepo-Coupe et al., 2013). Our tower dataset

includes flux and meteorological measurements from January

2002 through December 2011, except for periods when opera-

tion was interrupted (most significantly, from January 2006 to

August 2008, due to a big tree fall). In total, seven years of

hourly EC observations (2002–2005 and 2009–2011) were used

in this study. The high-frequency raw EC data were processed

and aggregated to hourly level. Detailed description of the

instrumentation and data preprocessing protocol can be found

in Hutyra et al. (2007) and Restrepo-Coupe et al. (2013).

After systematic data quality control and outlier removal

(Wu et al., 2016), hourly GEP was estimated by separating

hourly net ecosystem exchange (NEE, in lmol CO2 m�2 s�1,

with fluxes to the atmosphere defined as positive) into two

components: ecosystem respiration (Reco) and GEP, where

GEP = Reco - NEE. Reco was approximated by the average of

valid nighttime NEE during well-mixed periods (u* criterion:

≥0.22 m s�1; Hutyra et al., 2007), interpolated into the daytime

following the approach described in Restrepo-Coupe et al.

(2013). Hourly GEP (lmol CO2 m�2 s�1) was further aggre-

gated to daily steps (gC m�2 day�1) by summing up all the

effective measurements (u* criterion: ≥0.22 m s�1) within a

day. We also calculated the average daily GEP for each month

during our study period.

The EC observations also included environmental drivers:

photosynthetically active radiation (PAR), air temperature (Ta),

and vapor pressure deficit (VPD) (Saleska et al., 2003; Hutyra

et al., 2007). Diffuse light fraction is also available from June

2004 to December 2005, which was measured using a BF5 Sun-

shine Sensor (Delta-T Devices Ltd, Cambridge, UK) mounted at

the tower. As diffuse light fraction (the ratio between diffuse

and total PAR) can influence canopy-scale photosynthesis (Gu

et al., 2002, 2003b; Oliveira et al., 2007; Mercado et al., 2009; Cir-

ino et al., 2014) but was only measured for a short portion of the

EC record, we used a simple ‘Cloudiness Index’ (acronym as

‘CI’ hereafter) as a proxy of light quality:

CI ¼ 1� PARobs

PARclearsky
ð1Þ

where the observed PAR (PARobs) was obtained from the

tower-mounted PAR sensor, and the theoretical PAR

(PARclearsky) for clear-sky conditions at local elevation was

estimated using an established model (Weiss & Norman,

1985). CI was highly correlated with measured diffuse light

fraction (Fig. S1c, R2 = 0.60, P < 10�5), so we take it as a proxy

of diffuse light fraction in our analysis, with observed values

ranging from 0.1 (direct sun) to 0.8 (fully diffuse light).

We used rainfall measurements from the Tropical Rainfall

Measuring Mission (TRMM) Multi-satellite Precipitation Anal-

ysis (TMPA) (product 3b42V6, integrating microwave and

infrared satellite data with gauge data), which provides 0.25

degree and 3-hourly rainfall estimate for the Amazon from

1998 to the present (Huffman et al., 2007). The monthly TRMM

rainfall measurements centered on the k67 tower site from

years 2002–2005 and years 2009–2011 were used in this study.

LAI measurements

Leaf area index (LAI), the quantity component of leaf phenol-

ogy, influences ecosystem photosynthesis primarily by

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 1240–1257
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regulating the fraction of PAR absorbed by the forest canopy

(FAPAR). Here, we used a classic LAI-FAPAR relationship

(Xiao et al., 2004; Doughty & Goulden, 2008b) for estimating

FAPAR:

FAPAR ¼ 0:95� exp � k� LAI

cosðSZAÞ
� �

ð2Þ

where SZA is solar zenith angle, and k(=0.5) is the extinction

coefficient.

Monthly data of LAI were measured with an LAI-2000

instrument (LICOR) (2001–2005; Brando et al., 2010) at 100-

grid points within a one-hectare control plot of the Seca-Flor-

esta drought experiment, about 5 kms away from the k67 eddy

covariance tower. A five-year mean annual cycle of monthly

LAI (range: 5.35–6.15 m2 m�2) was used for deriving a mean

annual cycle of FAPAR at k67 (Fig. S2). As FAPAR showed

very small seasonal variability (<2%), we thus assumed the

effect of LAI on FAPAR seasonality at this forest site could be

ignored.

Overview of the LUE-based photosynthesis modeling

This study uses the LUE-based photosynthesis modeling

approach (Eqn 3; Monteith, 1972; Monteith & Moss, 1977):

GEP ¼ e� PAR ð3Þ
where e, or LUE, is the efficiency (mol CO2 per mol photons)

with which solar radiation (PAR) is used in photosynthesis

(GEP). The term e was calculated by Eqn (4) (Jarvis, 1976;

Field et al., 1995):

e ¼ GEP

PAR
¼ e0 � FAPAR� fenv ð4Þ

where e0 is the intrinsic LUE of the canopy under nonstressed

or reference environment condition, which is influenced by

internal leaf properties such as leaf nitrogen (Field, 1983) or

leaf age (Wilson et al., 2001; Doughty & Goulden, 2008b).

FAPAR is described by a classic LAI-FAPAR relationship in

Eqn (2); fenv represents the joint environmental effects that

downregulate e (Jarvis, 1976; Field et al., 1995; Gu et al., 2002;

Xiao et al., 2005; Mahadevan et al., 2008). The LUE-based pho-

tosynthesis model used here thus incorporates two kinds of

control on vegetation photosynthesis: (i) a shorter-timescale

photosynthetic response driven by light quantity (PAR) and

other environmental drivers fenv and (ii) a longer-timescale

response driven by changes in leaf quantity (which affects

FAPAR) and leaf quality (which affects e0).

LUEref and GEPnorm

To represent the capability of the canopy to photosynthetically

assimilate CO2 independent of fluctuations in environmental

drivers, we estimated the incident light-use efficiency of the

canopy under reference conditions (LUEref). LUEref was esti-

mated, following Wu et al. (2016) (where it was called canopy

photosynthetic capacity, or PC), as the ratio of EC-derived

Fig. 1 Flowchart of the analysis of photosynthesis–environment relationships in a tropical evergreen forest.

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 1240–1257
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GEP and PAR under reference environmental conditions. The

definition of LUEref (from Wu et al., 2016) generalizes previous

studies that removed the influence of varying PAR on GEP

(Hutyra et al., 2007; Doughty & Goulden, 2008b; Restrepo-

Coupe et al., 2013; Jones et al., 2014) by further removing the

influence of variation in other important environmental dri-

vers (i.e., VPD, Ta, and CI) and SZA. The reference environ-

mental conditions were taken as narrow bins of each driver:

PAR = 1320 � 200 lmol m�2 s�1, CI = 0.40 � 0.10,

VPD = 874 � 200 Pa, and Ta = 27.7 � 1.0 °C (8.1% of all

hourly GEP observations, about 20 observations per month,

on average). We assumed that LUEref is constant within a

month (roughly the timescale needed for significant canopy

changes) but that it can vary between months, following

changes in LAI or in per-area photosynthetic efficiency.

Because LUEref is derived from EC measurements, the ques-

tion arises as to whether it is an adequately independent pre-

dictor of GEP, which is also derived from EC. However,

changes in independent measurements of leaf-level photosyn-

thetic capacity (or maximum carboxylation capacity of

Rubisco, Vcmax), scaled to the canopy, are consistent with

changes in LUEref (Wu et al., 2016), lending confidence to our

interpretation of LUEref as an accurate measure of ecosystem-

scale photosynthetic infrastructure.

We note that the EC-derived LUEref, interpreted in the con-

text of the LUE-based photosynthesis modeling (Eqns 3 and

4), is proportional to e09FAPAR with a scaling constant fenv,ref
(Eqn 5; the environmental effect under reference conditions):

LUEref ¼ e0 � FAPAR� fenv;ref ð5Þ
Combining Eqns (3–5), we can further derive GEP and e as

functions of LUEref:

GEP ¼ 1

fenv;ref
� LUEref � PAR� fenv ð6Þ

e ¼ 1

fenv;ref
� LUEref � fenv ð7Þ

Equations (6 and 7) thus summarize the photosynthesis

process subject to the joint controls from longer-timescale bio-

tic change in canopy photosynthetic efficiency (i.e., monthly

LUEref, which captures changes in LAI as well as changes in

leaf-level photosynthetic efficiency aggregated to the canopy

scale) and shorter-timescale environmental drivers (including

hourly measurements of PAR and other variables). Using the

EC-derived monthly LUEref over the seven-year time series,

we further separated the shorter-timescale physiological

response to environmental drivers from the longer-timescale

biotic changes in canopy photosynthetic efficiency:

GEPnorm ¼ GEP

LUEref
� LUEref;avg ¼ LUEref;avg

fenv;ref
� PAR� fenv ð8Þ

enorm ¼ GEPnorm

PAR
¼ LUEref;avg

fenv;ref
� fenv ð9Þ

where LUEref,avg is the mean value of monthly LUEref over the

seven-year time series, and GEPnorm and ɛnorm were GEP and

e normalized by LUEref, respectively. Therefore, according

to Eqns 8 and 9, GEPnorm is proportional to PAR9fenv,

representing variability in GEP due to shorter-timescale envi-

ronmental variability alone. Likewise, ɛnorm is proportional to

the environmental response function fenv, representing vari-

ability in e caused by shorter-timescale environmental vari-

ability alone.

Path analysis for environmental controls on shorter-
timescale photosynthesis

Path analysis is similar to multiple regression approaches

and is especially useful when a priori causal or correlative

information is known among variables (Li, 1975). It has

been used to evaluate environmental controls on plant gas

exchange in a temperate deciduous forest (Bassow & Baz-

zaz, 1998) and a high-elevation subalpine forest (Huxman

et al., 2003). In this study, we applied it in a tropical forest

to investigate environmental controls on tropical forest pho-

tosynthesis.

Four environmental variables were considered in our

path analysis, including PAR, VPD, Ta, and CI, due to their

important roles in regulating tropical forest photosynthesis

processes (Graham et al., 2003; Goulden et al., 2004; Hutyra

et al., 2007; Oliveira et al., 2007; Doughty & Goulden, 2008a;

Lloyd & Farquhar, 2008; Cirino et al., 2014). We firstly

designed the path structure for their correlations as follows:

(i) atmospheric conditions (indicated by CI) and SZA deter-

mine the above-canopy PAR, (ii) PAR drives Ta, and (iii) CI

and Ta influence VPD. While other path structures may be

conceptually feasible, our intent was not to explore the rela-

tive goodness of fit of different models, but instead to iden-

tify the primary interaction pattern among these

environmental drivers.

We then designed two path diagrams to explore environ-

mental effects on EC-derived GEPnorm and ɛnorm (Eqns 8 and

9), respectively. We applied a log-transformation to ɛnorm to

achieve the normality assumption for path analysis (Terborgh

et al., 2014). All environmental variables were initially

assumed to directly control GEPnorm (or ɛnorm). To derive the

final path diagram, we ran the path analysis multiple times,

removing insignificant paths (P-value >0.05) on each iteration,

until all remaining paths were statistically significant.

The path value (PV, arrow thickness in Fig. 2) was derived

from the standardized partial regression coefficients, repre-

senting the relative strength of a given relationship. Therefore,

PV in our study allowed us to quantitatively compare the rela-

tive influence of various environmental variables on the pho-

tosynthesis. All the path diagrams were solved with IBM SPSS

AMOS 22 (Chicago, IL, USA) software, using full-information

maximum-likelihood estimation.

The LUE-based photosynthesis model

To represent how multiple environmental drivers affect

shorter-timescale tropical forest photosynthesis, we adopted

the methods from previous studies and described fenv as the

product of scalar functions of PAR (Lscalar), VPD (Wscalar), Ta

(Tscalar), and CI (CIscalar) (Jarvis, 1976; Field et al., 1995; Gu

et al., 2002; Xiao et al., 2005; Mahadevan et al., 2008):

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 1240–1257
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fenv ¼ Lscalar �Wscalar � Tscalar � CIscalar ð10Þ

Lscalar ¼ 1

1þ PAR=PAR0
ð11Þ

Wscalar ¼ 1� kw � VPD ð12Þ

Tscalar ¼ 1� kT � ðT � ToptÞ2 ð13Þ

CIscalar ¼ 1þ kCI � CI ð14Þ

The coefficients in Eqns (11–14) were as follows: PAR0,

which describes the Michaelis–Menten constraint of PAR on

photosynthesis (Mahadevan et al., 2008); kw, kT, and kCI,

defined as the strength of the environmental constraints from

VPD, Ta, and CI, respectively; and Topt, which is the optimal

Ta for photosynthesis.

However, the default fenv (shown in Eqn 10) did not con-

sider the fact of environmental correlations (Lloyd & Far-

quhar, 2008). To overcome this problem, we turned to the

path analysis. Only those environmental drivers, which were

significantly related with GEPnorm or ɛnorm in path analysis,

were selected for the final form of fenv, by retaining their scalar

functions while setting the other scalar functions equal to 1.

We called the final LUE-based photosynthesis model as ‘the

reference LUE model’.

To explore photosynthetic sensitivity response to environ-

mental change, we used the reference LUE model to simulate

GEPnorm as a function of a single proxy CI, assuming that

other environmental variables change linearly with CI, follow-

ing their currently observed joint distribution (including cor-

relations) (Table S1). The analysis would allow us to explore

how each environmental driver independently and jointly

controls photosynthetic activity and to perform a more realis-

tic sensitivity analysis of environmental effect on photosynthe-

sis.

Model runs and posterior analysis

To quantify the effects of both environmental and biotic (i.e.,

LUEref) drivers on modeled GEP, we ran our reference LUE

model at hourly timescales for a training dataset (years 2003,

2005, 2009, and 2011) and validated the model using an inde-

pendent dataset (years 2002, 2004, and 2010). We optimized

the model by minimizing the Euclidian distance between

modeled and observed GEP, using ‘NonLinearModel.fit’ (Hol-

land & Welsch, 1977) in MATLAB R2014a. After the optimization,

we ran the LUE model with the fitted model parameters for

full 7-year hourly measurements but with three different sce-

narios: (i) the full model (or ‘full’; forced by time-varying envi-

ronmental drivers interacting with time-varying LUEref), (ii)

only with environmental effects (or ‘Env’; forced only by time-

varying environment drivers, assuming LUEref is constant for

all the months), and (iii) only with canopy photosynthetic effi-

ciency effect (or ‘PE’; forced only by time-varying LUEref,

assuming environmental drivers are constant).

For the simulated GEP from each scenario, we aggregated

the hourly GEP to the daily, monthly, and yearly values,

respectively. We then applied ANOVA (Eqns 15–21) to partition

the variance of EC-derived GEP into different causes (‘full’,

‘Env’, and ‘PE’), following the approach used by a similar

study in a temperate deciduous forest (Richardson et al.,

2007). We repeated the analysis for the three different periods

of integration at daily, monthly, and yearly timescales.

SST ¼
XN
i¼1

ðyi;obs � yobsÞ2 ð15Þ

SSfull ¼
XN
i¼1

ðyi;obs � y
_

i;fullÞ2 ð16Þ

SSEnv ¼
XN
i¼1

ðyi;obs � y
_

i;EnvÞ2 ð17Þ

SSPE ¼
XN
i¼1

ðyi;obs � y
_

i;PEÞ2 ð18Þ

R2
full ¼ 1� SSfull

SST
ð19Þ

R2
Env ¼ 1� SSEnv

SST
ð20Þ

R2
PE ¼ 1� SSPE

SST
ð21Þ

where yi,obs refers to EC-derived (observed) GEP, and y
_

i;full,
y
_

i;Env, and y
_

i;PE refer to the modeled GEP for the ith observa-

tion under the model scenarios of ‘full’, ‘Env’, and ‘PE’ respec-

tively. yobs is the mean of EC-derived GEP. N is the total

number of observation under given integrated timescales. SST
denotes the total sum of squares for EC-derived GEP; SSfull
denotes the total sum of squared error of modeled GEP

between observed and ‘full’ scenario; SSEnv denotes the total

sum of squared error of modeled GEP between observed and

‘Env’ scenario; SSPE denotes the total sum of squared error of

modeled GEP between observed and ‘PE’ scenario. Finally,

R2
full, R

2
Env, and R2

PE denote the fraction of EC-derived GEP

variability explained by full model, environmental drivers,

and LUEref, respectively.

Decoupling the effects of Ta and VPD on EC-derived
GEPnorm

To assess the effects of Ta and VPD on photosynthesis, we

firstly normalized hourly EC-derived GEP to derive GEPnorm.

We then filtered the full 7-year hourly GEPnorm dataset to

focus only on those measurements with high light

(PAR≥1500 lmol photons m�2 s�1). This treatment can tease

out the effect of environmental factors other than VPD and Ta.

Then, we did two tests to assess the effects of VPD and Ta on

GEPnorm. In test 1, we binned GEPnorm by Ta, with a 1 °C
interval from 25.5 to 31.5 °C, and plotted GEPnorm against

VPD within each bin. In test 2, we binned GEPnorm by VPD,

with a 200 pa interval from 0 to 2200 pa, and plotted GEPnorm

against Ta within each bin. This analysis allowed us to sepa-

rate the effects of VPD and Ta on GEPnorm.
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Exploring environmental controls on interannual LUEref

variability

We also analyzed the correlations between key environmental

drivers and LUEref at the monthly scale across all our seven-

year data record to explore whether there exists any environ-

mental control on LUEref interannual variability.

Results

Relationships among environmental variables

The four environmental variables at our near-equatorial

tropical forest site were highly correlated (Figs S3 and S4

and Table S1). The path analysis (Fig. 2) revealed that (i)

PAR had a significant positive effect on Ta (path value,

PV = 0.53, P < 10�5), and (ii) Ta had a significant positive

effect on VPD (PV = 0.86, P < 10�5). In addition, there

was a secondary path between CI and VPD (PV = �0.03;

P < 10�5). Finally, CI had a direct effect on PAR

(PV = �0.69, P < 10�5), as expected because CI is defined

to be negatively correlated with PAR in Eqn (1). CI also

had an indirect effect on Ta (PV = �0.37; P < 10�5) and

VPD (PV = �0.36; P < 10�5). These quantitative results

are consistent with previous findings that clouds and

aerosols (positively correlated with CI) influenced both

the surface energy balance and the hydrologic cycle (Ben-

ner & Curry, 1998; Gu et al., 2002).

Environmental controls on shorter-timescale
photosynthesis

We observed that three environmental variables signifi-

cantly controlled the normalized light-use efficiency

(ɛnorm) at hourly timescales (Fig. 2a): (i) CI had a posi-

tive effect on ɛnorm (PV = 0.34, P < 10�5), and (ii) VPD

and PAR had negative effects on ɛnorm with PV = �0.23

and �0.18, respectively. The absolute PV of CI on ɛnorm
was significantly larger than that of VPD and PAR on

ɛnorm, indicating that diffuse light fraction (approxi-

mated by CI in this study) might be the dominant con-

trol on ɛnorm.
We observed that only two environmental variables

controlled the normalized GEP (GEPnorm) at hourly

timescales (Fig. 2b): (i) PAR had the expected strongly

positive effect on GEPnorm (PV = 0.84, P < 10�5) and

likewise (ii) VPD had a significantly negative effect on

GEPnorm (PV = �0.35, P < 10�5). The absolute PV of

PAR on GEPnorm was more than twice that of VPD on

GEPnorm, indicating that PAR was the dominant con-

trol. Our analysis of environmental controls on raw

light-use efficiency (ɛ) and GEP, respectively (Fig. S5),

showed that both relationships, LUE vs. environmental

drivers and GEP vs. environmental drivers, were iden-

tical to ɛnorm vs. environment and GEPnorm vs. environ-

ment, respectively.

Our path analyses therefore revealed that three envi-

ronmental variables (CI, VPD, and PAR) significantly

controlled hourly photosynthesis at our tropical forest

site: CI and VPD affected photosynthetic activity pri-

marily through influencing ɛnorm, and PAR affected

photosynthetic activity primarily through its direct

effect on GEPnorm.

LUE modeling: synthesis and validation from hourly to
interannual timescales

Given the results of our path analysis, we were able to

omit the temperature response function from the over-

all environmental response function (Eqn 10), yielding

the following:

Fig. 2 Path diagrams illustrate environmental controls on (a) the logarithm of the canopy photosynthetic efficiency-normalized light-

use efficiency, or Log(ɛnorm), and (b) the canopy photosynthetic efficiency-normalized GEP (GEPnorm). We use seven years of hourly

daytime measurements at k67 site for the analysis. The thickness of each arrow indicates standardized correlation coefficients, or path

value, (see legend). All the paths shown here are statistically significant (P < 0.001). The subdiagram of environmental variables is col-

ored gray.
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GEP ¼LUEref

fenv;ref
� PAR� ð1þ kCI � CIÞ

� ð1� kw � VPDÞ � 1

1þ PAR=PAR0

� �
ð22Þ

Equation (22) constituted our final form of the LUE-

based photosynthesis model or the reference LUE

model.

We first validated the model performance. We

found that the reference LUE model (Eqn 22) forced

by time-varying environmental drivers and monthly

LUEref (or ‘full’ model) explained 77% of variability

in EC-derived GEP at hourly timescale (Fig. 3a).

When aggregating the modeled and EC-derived

GEP to longer timescales (days to years), our

results indicated good agreement between these two

metrics at daily, monthly, and yearly timescales

(R2 = 0.71, 0.73, and 0.80, respectively) (Fig. 3b–d).
We also found that the reference LUE model

(Eqn 22) forced only by time-varying environmental

drivers with a constant LUEref (or ‘Env’ model) did

similarly well in explaining the hourly variability in

EC-derived GEP (R2 = 0.75; Fig. 3e). However, when

aggregating to longer (daily and monthly) time-

scales, the ‘Env’ model explains much less of the

variability in EC-derived GEP than does the ‘full’

model, with strong evidence at monthly timescales

(Fig. 3c, g). A similar contrast is apparent at

annual timescales (Fig. 3d, h), but the evidence is

relatively weaker, as we only have seven-year

observations (data size = 7) for annual timescale

comparisons.

We also ran the LUE model (Eqn 22) driven by the

same hourly environmental drivers but with three tem-

poral resolutions of LUEref (monthly, to a mean sea-

sonal cycle (one data point for each month of the year),

to a constant LUEref derived as the mean of the entire

monthly time series; Fig. 4b). Our results indicated that

the LUE model with the highest temporal resolution of

LUEref could best capture interannual variability of

monthly GEP (R2 = 0.74; Fig. 4c), followed by a mean

LUEref seasonal cycle (R2 = 0.61), and a constant LUEref

(R2 = 0.14).

We then used our reference LUE model to partition

GEP variability to different causes. We found that at

hourly timescales, modeled GEP of ‘full’ scenario (dri-

ven by both environmental and biotic factors, explain-

ing 77% of EC-derived GEP) was most sensitive to

variation in environmental drivers (explaining 75% of

variance in EC-derived GEP) and, as expected, least

sensitive to variation in LUEref (1% of variance in EC-

derived GEP explained), which is assumed to be con-

stant within a month (Fig. 5). The environmental vari-

ability becomes less important in affecting modeled

GEP at progressively longer timescales, with 58%, 3%,

and 11% of the variance in EC-derived GEP attributable

to variation in environmental drivers at daily, monthly,

and yearly timescales, respectively (Fig. 5). Meanwhile,

variation in the biotic response becomes progressively

more important in determining EC-derived GEP, with

Fig. 3 GEP-model validation across a wide range of timescales: (a, e) hourly, (b, f) daily, (c, g) monthly, and (d, h) yearly timescales.

GEP models used here include the ‘full’ model (top panel; using the reference LUE-based photosynthesis model, driven by both time-

varying environmental drivers and monthly LUEref) and the ‘Env’ model (bottom panel; using reference LUE-based photosynthesis

model, driven by time-varying environmental drivers only with a constant LUEref). The model is trained by the data of years 2003,

2005, 2009, and 2011 and validated by the independent data of years 2002, 2004, and 2010. Observed GEP refers to eddy covariance-

derived GEP. Fig. 3a–c and e–g shows the validation data, and Fig. 3d, h shows all 7-year data.
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6%, 63%, and 76% of the variance in EC-derived GEP

can be attributed to variation in LUEref at daily,

monthly, and yearly timescales, respectively (Fig. 5).

LUE modeling: characterizing environmental responses

The coefficients for the ‘full’ model driven by both

time-varying environmental drivers and monthly

LUEref were reported in Table S2, including fenv,ref (the

scaling constant in Eqn 5), kCI (the coefficient of GEP

sensitivity to CI), kw (the coefficient of GEP sensitivity

to VPD), and PAR0 (the Michaelis–Menten constraint of

PAR on photosynthesis). These coefficients indicated

that photosynthesis was as follows: (i) ~3.06 times as

efficient under fully diffuse light as under fully direct

light and (ii) ~1.92 times as efficient without VPD stress

as under the maximum VPD stress (~2.5 kpa at k67

site).

With the model coefficients (Tables S2) and empirical

correlations among environmental variables (Table S1),

we then assessed how environmental variables inde-

pendently and jointly controlled photosynthesis. Fig. 6a

shows that photosynthesis responds monotonically to

CI, VPD, and PAR individually. However, when con-

sidering the correlations among environmental vari-

ables (Fig. 6b), we found that (i) the combined effect of

Fig. 4 Interannual variation of monthly environmental variables, biotic factor (LUEref), eddy covariance (EC) derived GEP, and LUE-

based model simulated GEP. (a) Interannual variation of four monthly environmental drivers: satellite TRMM-based Rainfall (gray bar)

and EC-derived PAR (red), VPD (blue), and CI (light blue); (b) interannual variation in biotic factor represented by three temporal reso-

lutions of LUEref (monthly in green, to a mean seasonal cycle (one data point for each month of the year) in blue, to a constant LUEref

derived as the mean of the entire monthly time series in orange) at k67 site; (c) interannual variation in EC-derived GEP (black),

explained by LUE-based model simulated GEP driven by time-varying environmental drivers and a constant LUEref (orange; R
2 = 0.14;

P < 10�5), driven by time-varying environmental drivers and a mean seasonal cycle of LUEref (blue; R
2 = 0.61; P < 10�5), and driven by

time-varying environmental drivers and monthly LUEref (green; R
2 = 0.74; P < 10�5).
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PAR and CI led to a concave photosynthetic response,

with the maximum photosynthesis at the moderate CI

and (ii) the combined effect of PAR, CI, and VPD also

led to a concave response, but with increased curvature

and with the maximum photosynthesis reached when

CI is around 0.42. This optimal CI value differentiated a

‘light-limited regime’ from a ‘stomatal-limited regime’

(Fig. 6b).

The hump-shaped relationship of Fig. 6b has impor-

tant implications for the environmental sensitivity of

tropical forest physiological response in wet vs. dry

seasons. Relative to current seven-year environmental

conditions, we simulated how the k67 forest GEPnorm

responded to a reduction in CI (typically associated

with more sunlight, less rainfall, and higher VPD;

Table S3), generally seen during atmospheric drought

conditions in the Amazon basin. Our results showed

that with CI reduction and associated increase in PAR,

VPD, and Ta (Fig. S6), the integrated environmental

effect led to an initial increase and then a decrease in

wet season modeled GEPnorm and a continuous

decrease in dry-season modeled GEPnorm (Fig. 6d). This

is because wet-season environmental conditions tend to

be cool, humid, and less bright, while the dry-season

Fig. 5 Fraction of EC-derived GEP explained by environmental

drivers (gray squares), by the biotic factor (LUEref, gray trian-

gles), and by a full LUE-based model that includes both compo-

nents (black circles), as a function of timescale of observation.

Partitioning among model components used a sum-of-squares

approach, as given by Eqns (19–21).

Fig. 6 Model simulated photosynthetic response to environmental drivers (fenv) under given biotic control (i.e., a fixed LUEref) based on the

reference LUE-based photosynthesis model (Eqn 22; coefficients from Table S2) and correlations among environmental drivers (Table S1),

expressed as a function of CI (with PAR and VPD being expressed as a linear function of CI; see Table S1). (a) Model simulated environmental

response to each environmental driver [CI in black squares (CIscalar; Eqn 14); PAR in gray circles (Lscalar9PAR; Eqn 11); VPD in gray triangles

(Wscalar; Eqn 12)]; (b) model simulated environmental response to joint environmental effects [total light effect in gray line (CIscalar9Lscalar9-

PAR); joint light and water effect in black line CIscalar9Lscalar9PAR9 Wscalar)]; (c) probability distribution of hourly CI observations for a given

SZA bin (20° SZA ≤40°) for the wet season (black) and the dry season (gray) under current seven-year conditions; (d) modeled GEPnorm
response to CI reduction (corresponding to the increase in PAR and VPD; Fig. S6) relative to current seven-year conditions, for the wet season

(black) and the dry season (gray). The gray dashed lines in (b) and (c) indicate the optimal CI where GEPnorm is at its maximum.
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conditions are already hotter, less humid, and brighter

(Fig. 6c). In addition, our results also indicated that

modeled GEPnorm at k67 had small sensitivity to mod-

erate fluctuations in CI: a reduction in CI by 0.1 (a ~20%
change in CI), associated with an increase in midday

PAR of ~220 lmol m�2 s�1 and an increase in midday

VPD of ~170 Pa (Fig. S6), causing absolute changes of

<3% in modeled GEPnorm in both wet and dry seasons

(Fig. 6d and Table S3).

As modeled GEPnorm of this forest had small sensitiv-

ity to environmental variability (Fig. 6d), and dry sea-

son of this forest is more likely to be within its

‘stomatal-limited regime’ (Fig. 6b, c), we found, as

expected, that the mean seasonality of modeled GEP

driven by environment alone showed inadequate sea-

sonal variation (Fig. 7), accounting for only ~15% of

mean seasonality of observed GEP. By contrast, the

model driven by biotically controlled LUEref alone well

tracked the mean seasonality of observed GEP

(R2 = 0.90; Fig. 7), due to a strong dry-season increase

in canopy photosynthetic infrastructure, not captured

by the environment-only model. The main deviation

for biotic-only model was late in the dry season (Octo-

ber to December), when observed GEP fell significantly

below that predicted by LUEref, consistent with envi-

ronment-driven stomatal limitation that prevented the

canopy’s full photosynthetic efficiency from being uti-

lized (Fig. 6b, c). This late dry-season suppression of

GEP by stomatal limitation was captured by both

models which included environmental drivers (the

environment-only model and the full model).

Decoupling the effects of Ta and VPD on GEPnorm

Our analysis indicated that GEPnorm showed a nearly

monotonic decline with VPD when adjusted for Ta

(and PAR and CI) (Fig. 8a; t-test for slopes under each

reference Ta is significantly different from 0, with

P = 0.0251), but that GEPnorm showed little change with

Ta, when adjusted for VPD (and PAR and CI) (Fig. 8b;

t-test for slopes under reference VPD is insignificantly

different from 0, with P = 0.0875). These results

together suggest that VPD is even more direct control

on GEPnorm. This analysis is consistent with the results

from path analysis (Fig. 2), suggesting that VPD is the

direct control on GEPnorm.

Fig. 7 Seven-year mean annual cycles of monthly EC-derived

GEP (black squares, named as ‘EC-derived GEP’), modeled GEP

with a constant LUEref and varying environmental drivers (gray

triangles, named as ‘Env-modeled GEP’), and modeled GEP

with monthly LUEref and constant environmental drivers (gray

circles, named as ‘LUEref-modeled GEP’). The dry-season

increase in LUEref (gray circles) is evidently not prevented by

water limitation, but consistent with leaf/canopy physiological

response (e.g., dry-season stomatal closure), the realized GEP is

lower, relative to LUEref in the dry season than in the wet sea-

son. Error bars are for 95% confidence intervals; dry season is

shaded in gray.

Fig. 8 Relationships between canopy photosynthetic efficiency-

normalized GEP (GEPnorm, filtered by PAR≥1500 lmol CO2 m�2

s�1) and VPD in (a) and GEPnorm and Ta in (b). All the hourly

measurements at k67 site (years 2002–2005, 2009–2011) were

used. Different colored lines in (a) represent different tempera-

ture (Ta) bins (1 °C bin). Different colored lines and symbols in

(b) represent different VPD bins (200 pa bin). The central gray

line indicates the overall bivariate relationship between GEPnorm

and VPD (a) and Ta (b), without being conditioned by Ta in (a),

or VPD in (b). Uncertainty bars indicate 95% confidence inter-

val. The mean of all GEPnorm vs. VPD slopes in (a), each from a

separate Ta bin, is significantly negative (t-test, P = 0.0251),

while the mean of all GEPnorm vs. Ta slopes in (b), each from a

separate VPD bin, is statistically indistinguishable from 0 (t-test,

P = 0.0875).
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Environmental controls on interannual variability of
monthly LUEref

Our analysis showed that there was a strong, but

lagged, correlation between environmental variables

(PAR, VPD, and Rainfall) and LUEref at monthly time-

scales over seven-year observations at k67 (Fig. 4 and

Table 1), with LUEref best tracking PAR from 3 months

earlier (R2 = 0.38, P < 10�5), VPD from 3 months earlier

(R2 = 0.24, P < 10�5), CI from 4 months earlier

(R2 = 0.38, P < 10�5), and Rainfall from 4 months ear-

lier (R2 = 0.42, P < 10�5).

Discussion

This work allows us to address three main questions

about the regulation of photosynthesis in tropical for-

ests and also to consider limitations in our ability to

answer these questions.

How do environmental drivers control hourly GEP in an
evergreen tropical forest?

Our analysis confirms that variation of environmental

drivers is the dominant control on the variation of trop-

ical forest GEP at hourly to daily timescales (through

direct plant physiological response), as suggested by

previous studies (Goulden et al., 2004; Hutyra et al.,

2007; Oliveira et al., 2007; Doughty & Goulden, 2008a;

Cirino et al., 2014). This shorter-timescale physiological

response follows a positive response to variations in

light availability (PAR and CI) and a negative response

to atmospheric water deficit (VPD) (Figs 2 and 6). We

are also able to model these responses by a parsimo-

nious LUE-based photosynthesis model (Eqn 22;

explaining R2 = 77% of EC-derived GEP; Fig. 3a).

This analysis allows us to investigate the cause for pre-

viously reported observations (at a nearby evergreen for-

est site) that at given PAR, hourly GEP is higher in the

morning than in the afternoon (Doughty et al., 2006). It

had been suggested that a combination of increased

evapotranspiration demand and plant endogenous circa-

dian rhythms might explain the afternoon decline in

light sensitivity of GEP in this tropical forest (Goulden

et al., 2004; Doughty et al., 2006). Our LUE-based photo-

synthesis model, by including environmental variables

beyond PAR, can well simulate the diel patterns of GEP

(Fig. 3a and Fig. S7), confirming that physiological

response to higher afternoon evaporative demand is suf-

ficient to account for observed diel patterns in GEP. In

addition, our analysis confirms the positive effect of

moderate cloudiness on GEP as reported by earlier stud-

ies (Gu et al., 2002, 2003b; Oliveira et al., 2007; Mercado

et al., 2009; Cirino et al., 2014).

Our study highlights the importance of accounting

for correlations among environmental drivers (e.g., CI,

PAR, and VPD), and between these drivers and the

underlying biotic factor (i.e., LUEref) on which these

drivers act. Such accounting shows that the normalized

GEP (GEPnorm) is much less sensitive to environmental

variability than previously reported, for example, a ref-

erence 20% change in CI has only <3% effect on

GEPnorm (Fig. 6d, Fig. S6, and Table S3), about fourfold

less than in other studies (Oliveira et al., 2007; Doughty

& Goulden, 2008a; Lee et al., 2013; Cirino et al., 2014).

The underlying reason for low sensitivity of GEPnorm to

environmental variation is twofold: (i) The correlated

changes in CI, PAR, and VPD tend to compensate for

one another when acting on given LUEref (e.g., the posi-

tive effect of increasing PAR is partly canceled by the

correlated negative effect of increasing VPD), reducing

the overall effect of changing climate on GEPnorm and

(ii) normalizing for biotic changes in canopy photosyn-

thetic efficiency allowed us to more accurately quantify

the effects of environmental variation on that canopy

infrastructure, without being confounded by simultane-

ous changes in both drivers and the model parameters

to respond to those drivers (Wu et al., 2016). As

GEPnorm had much lower seasonal variation than did

raw GEP (Fig. 7), our work further highlights the

importance of representing variation of the biotic factor

(LUEref) in explaining GEP variability over longer time-

scales in the tropics (see the question below).

What are the relative contributions of environmental and
biotic factors in controlling GEP across timescales?

Our finding that environmental variation alone

explains progressively less GEP variability at longer

and longer timescales is consistent with similar findings

in temperate biomes (Hui et al., 2003; Richardson et al.,

2007; Urbanski et al., 2007; Teklemariam et al., 2010;

Marcolla et al., 2011; Wu et al., 2012). However, this

trend is much more pronounced at this tropical site,

with environmental variation accounting for only ~10%
or less of GEP at longer timescales (i.e., monthly and

yearly), as compared to ~30% or more in a temperate

forest (Richardson et al., 2007; Urbanski et al., 2007).

This difference might be attributed to much smaller

environmental variability in the tropics and to canopy

photosynthetic efficiency in the tropics being less

tightly synchronized with environmental variability

(Table 1). Our seven-year dataset is not long enough to

draw strong inferences about the controls on interan-

nual GEP variability and so the pattern found in this

study remains to be tested with a longer data record

and more tropical forest sites in future. However, this

work shows that the environmental responses that
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explain most of the hourly variability in GEP do not

explain its seasonal or interannual variability, high-

lighting that understanding and modeling the long-

term dynamics of GEP in response to environmental

drivers may be especially challenging in the tropics.

Variation in canopy photosynthetic efficiency (i.e.,

monthly LUEref) may arise from seasonal and interan-

nual patterns of leaf dynamics (flushing and abscission

drive variations in canopy leaf area and changes in the

age composition of the canopy). Wu et al. (2016) sug-

gested that seasonal variation in leaf demography (i.e.,

leaf age composition) and in leaf ontogeny (i.e., age-

dependent photosynthetic efficiency) jointly explained

as much as 91% of average LUEref seasonal variability.

This suggests that one way to improve model represen-

tation is the direct inclusion of prognostic modeling of

demographic processes in leaves and canopies (e.g.,

Kim et al., 2012).

However, understanding and quantitative represen-

tation of the biological mechanisms underlying this

demographically induced LUEref seasonality and inter-

annual variability are still largely lacking. Our analysis

showed that there is no direct instantaneous environ-

mental control on interannual variability of monthly

LUEref (Table 1). Instead, LUEref well tracked preceding

environmental drivers (i.e., PAR with R2 = 0.38) of

3 months at k67 site (Table 1). This preceding environ-

mental control on LUEref interannual variability might

be as a consequence of leaf maturation time to transfer

from newly flushing leaves of low photosynthetic effi-

ciency to mature leaves with maximum photosynthetic

efficiency (Wu et al., 2016). In addition, leaf demogra-

phy may also arise from other biological mechanisms,

including adaptations to avoid herbivores or pathogens

(Lieberei, 2007) or for optimal carbon acquisition under

seasonally and interannually varying resource avail-

ability (Kikuzawa, 1991, 1995; Wright & van Schaik,

1994; Wright, 1996; Brienen et al., 2015; Guan et al.,

2015). To empirically test environmental control on

LUEref variability and also to reconcile different mecha-

nisms of leaf demography (and demography induced

LUEref) thus require an interdisciplinary approach to

expand our observation skills across time, space, and

spatial resolutions and will be critical to understanding

the long-term response and resiliency of tropical forests

to changing climate.

In addition to demography (Wu et al., 2016), LUEref

might also be sensitive to physiological acclimation of

given assemblages of leaves to seasonal or interannual

environmental variability, as well as physiological

response to extreme climatic events. The physiological

acclimation might be associated with the plasticity

response of tropical trees to longer-timescale environ-

mental variability (e.g., Strauss-Debenedetti & Bazzaz,T
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1991), which might be embedded in the trade-offs

among covarying environmental variables, and biotic

vs. environmental controls on response to those trade-

offs, which is too complex to objectively resolve from

tower-flux observations and the simple modeling pro-

posed here. Therefore, it is yet pending to be tested and

quantified on the role of physiological acclimation over

longer-timescale photosynthetic response in future

studies (and, ideally, manipulative experiments). More-

over, the extreme events, such as drought in Amazon,

could influence LUEref variability by forcing the varia-

tion in carbon allocation among roots, stems, and leaves

as a response to climatic stress (Doughty et al., 2015), or

imposing the forest disturbance and associated tree

mortality, and thus changing LUEref through the

changes in both leaf demography and canopy leaf area.

A thorough understanding of how LUEref varies with

climate extremes and how LUEref changes during forest

postdisturbance recovery is thus greatly needed.

Can canopy photosynthetic efficiency-normalized GEP
help to resolve long-standing debates about
environmental limitations and sensitivity to temperature
in tropical evergreen forests?

As discussed above, separating the effects of changing

environmental drivers from biotic changes in canopy

photosynthetic efficiency allows for a more accurate

quantification of the effects of environmental variabil-

ity. Results from this holistic approach enable us to

revisit two long-running debates in tropical forest func-

tion.

Water vs. light limitation. Whether tropical evergreen

forests are light-limited or water-limited has been a

long-standing and controversial question in tropical

ecology, as tropical evergreen forests maintain high

GEP and evapotranspiration during the dry season

while most earth system models simulate dry-season

declines in GEP and evapotranspiration (Saleska et al.,

2003; Baker et al., 2008; Lee et al., 2013; Restrepo Coupe

et al., 2016; Wu et al., 2016). Our results here suggest

that both light and water limitations co-occur and oper-

ate at different timescales in tropical evergreen forests.

Figure 6 shows that light availability (via PAR9CI)

and water deficit (via VPD and VPD induced stomatal

closure) are jointly associated with increases and

decreases, respectively, in hourly GEP. At monthly

timescales, we observed increases in both GEP and

canopy photosynthetic efficiency (LUEref) during peri-

ods with higher sunlight, even during the dry season

(Figs 4 and 7). This observation suggests that even dur-

ing the dry season, water supplies are sufficient to sup-

port canopy development, which increases LUEref.

However, simulations that only consider the variation

of LUEref overestimate GEP in the dry season (Fig. 7).

This pattern suggests that dry-season LUEref is not

water-limited (as LUEref increases with increasing

water deficit in the dry seasons), but that dry-season

GEPnorm, relative to its potential photosynthetic effi-

ciency, is water-limited (e.g., decreases with increasing

water deficiency, or higher VPD, in the dry season;

Figs 6c, d and 7). The increase in LUEref during dry sea-

son might be facilitated because ground water storage

(recharged by excess wet-season precipitation input) is

enough to support the evapotranspiration demand, and

thus, the forest as a whole overbuilds the capability to

take advantage of excess light availability in the dry

season (Kikuzawa, 1995; Doughty et al., 2015; Guan

et al., 2015). Our analysis is thus consistent with light

limitation of canopy development of photosynthetic

efficiency (LUEref) and with water limitation of stom-

atal conductance, both simultaneously operating dur-

ing the dry season.

Tropical forest sensitivity to temperature. Our finding that

temperature had no detectable direct effect on GEPnorm

(only the indirect effect via VPD; Figs 2 and 8) has

important implications for the ongoing debate about

the temperature sensitivity of tropical forests. Doughty

& Goulden (2008a) and Clark et al. (2013) argued that

carbon uptake in tropical forest was limited by high tem-

perature, while Lloyd & Farquhar (2008) argued that

observed declines in uptake with temperature were not

due to high temperature per se, but to the associated

increase in VPD that induced stomatal closure. Our path

analysis suggests that in our record of observations, tem-

perature affects GEP indirectly through its effect on VPD

(Fig. 2). This interpretation is confirmed by bivariate

analysis of temperature and VPD, which could detect no

effect of temperature that was independent of VPD

(Fig. 8). Tropical forest carbon uptake may still be lim-

ited by temperature, but that limit is not evident over the

range of temperatures observed at this forest site.

Possible caveats and limitations

The current study has two interpretive limitations. One

is the lack of explicit consideration of soil moisture. Soil

moisture can have an important influence on photosyn-

thesis (Kapos, 1989; Baker et al., 2008; Brando et al.,

2008); excluding it from analysis might affect our

derived canopy photosynthetic efficiency (LUEref) and

fenv terms in the LUE-based photosynthesis modeling.

However, even if not explicitly included, its effects are

likely well represented indirectly: VPD and soil mois-

ture are highly correlated in tropical forests, and they

both regulate plant physiological processes through

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 1240–1257
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stomatal conductance (Meir et al., 2009; Brando et al.,

2010; Lee et al., 2013). This suggests that much of the soil

moisture effect on photosynthesis might already be cap-

tured by the inclusion of VPD in our analysis. Second,

even if a substantial soil moisture effect was not cap-

tured by VPD, our results are likely robust. As soil mois-

ture should be lower in the dry season than in the wet

season (Baker et al., 2008; Meir et al., 2009; Brando et al.,

2010), the consideration of soil moisture should reduce

modeled dry-season photosynthesis (i.e., our current

LUE model might overestimate dry-season photosyn-

thesis) and increase the estimate of dry-season canopy

photosynthetic efficiency (e.g., Fig. S4 in Wu et al., 2016).

Thus, our observation of dry-season green-up (increase

in LUEref) would be even larger, and the effects we see

resulting from LUEref on GEP would if anything be

stronger than reported here, relative to the effect of envi-

ronmental variation on GEP (Wu et al., 2016).

The other possible limitation comes from our LUE-

based photosynthesis modeling approach, which is a

simplified representation of canopy photosynthesis. We

assumed that the environmental effects on canopy pho-

tosynthesis could be represented by the multiplication

of environmental stressors (Eqn 22), each described by

a linear function. Possible nonlinear responses and

feedbacks are thus neglected in this parameterization.

In addition, it is still uncertain whether the model

parameterized at one site can be extended to other trop-

ical forest sites or into the future climate beyond the

current environmental range. However, with these

caveats aside, it is clear that the model successfully

reproduces the measured fluxes across a range of time-

scales (Fig. 3a–d).

Implications

In contrast to modeling approaches that assume meta-

bolic variation in tropical evergreen forests can be rep-

resented largely as a response to environmental

variation, our case study of forest photosynthesis sug-

gests that metabolism in these systems is importantly

driven by both environmental variation (at shorter

timescales) and by longer-timescale biological rhythms

that are decoupled from the environment. By account-

ing for this decoupling, our approach can reframe

long-standing debates about functioning of tropical

evergreen forests. It suggests, for example, (i) that water

availability limits instantaneous photosynthetic activity

of existing leaves, but not canopy-scale development of

overall photosynthetic function (which is driven by the

phenology of leaf production, development, and abscis-

sion), and (ii) that although forest photosynthesis is lim-

ited by atmospheric water deficit which in turn limits

canopy conductance, these forests are not currently

reaching a temperature threshold above which photo-

synthetic activity declines due to thermal stress.

The method used here to partition environmental

and biotic controls on photosynthesis could also be

used to tackle a range of questions about tropical forest

function. For example, it may be applicable to the study

of ecosystem respiration and transpiration, and pro-

cesses also subject to these controls (Hutyra et al., 2007;

Phillips et al., 2009; Brienen et al., 2015). In addition,

this partitioning approach might provide insight into

whether there are systematic differences between tem-

perate and tropical zones in the relative importance of

environmental and biotic controls on ecosystem meta-

bolism — the biotic control in temperate biomes (i.e.,

leaf phenology) being more tightly synchronized with

environmental seasonality than in tropical biomes (Cle-

land et al., 2007). Finally, our results also suggest that

failing to account for biotically regulated variations in

canopy photosynthetic light-use efficiency (i.e., LUEref),

risks inaccurate model predictions of tropical forest

GEP at longer timescales. We have shown that the vari-

ation in monthly LUEref –arising from phenology of leaf

quality (Wu et al., 2016) and possibly from biological

responses to climate extremes (Doughty et al., 2015)

and disturbance (Anderegg et al., 2015) – is a key driver

of seasonal and interannual changes in tropical ever-

green forest GEP. Therefore, models that accurately

simulate seasonal and interannual changes in biotically

regulated functions like LUEref will be critical to pre-

dicting future tropical forest carbon dynamics.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Correlations among environmental variables for seven years hourly observations (years: 2002–2005, 2009–2011) within a
fixed SZA bin (20–40°) at k67 site.
Table S2. Model coefficients (mean � 95% confidence interval) of the reference LUE-based photosynthesis models (Eqn 22) driven
by hourly environmental drivers and monthly LUEref, using the training data of 4-year eddy covariance measurements (2003, 2005,
2009, and 2011) at k67 site.
Table S3. Sensitivity analysis on modeled GEPnorm response to a reduction in CI relative to current seven-year condition by using
the reference LUE model (Eqn 22) under the scenario of a constrained SZA bin (20° ≤ SZA ≤ 40°), which accounts for environmental
correlations (Table S1).
Figure S1. The derivation, distribution and validation of CI at k67 site: (a) scatterplot of theoretical PAR and observed PAR; (b) diel
pattern of CI; (c) correlation between CI and diffuse fraction (the ratio between diffuse and total PAR; from a BF5 Sunshine Sensor
at k67 site).
Figure S2. Modeled FAPAR seasonality based on Leaf area Index (LAI) and changing solar zenith angles (SZA) at k67 site (driven
exclusively by average annual cycle of monthly ground-based LAI measurements).
Figure S3. Relationships among the four major environmental variables (VPD, Ta, PAR, and Cloudiness Index, CI) under a given
SZA bin (20–40°).
Figure S4. Relationships among the four major environmental variables (VPD, Ta, PAR, and CI) for all the daytime measurements.
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Figure S5. Path diagrams illustrate environmental controls on (a) the logarithm of light-use-efficiency, or Log (ɛ), and (b) GEP.
Figure S6. Sensitivity analysis of environmental change under a reduction in CI relative to current seven-year condition when
accounting for environmental correlations (Table S1), under the scenario of a given SZA bin (20° ≤ SZA ≤ 40°).
Figure S7. Mean diel patterns of modeled and EC-derived GEP: (a) training data (years 2003, 2005, 2009, and 2011), and (b) testing
data (years 2002, 2004, and 2010).
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